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The nature of spin excitations in the one-third
magnetization plateau phase of Ba3CoSb2O9

Y. Kamiya1, L. Ge2, Tao Hong 3, Y. Qiu4, D.L. Quintero-Castro5, Z. Lu5, H.B. Cao3, M. Matsuda3, E.S. Choi6,

C.D. Batista 7,8, M. Mourigal 2, H.D. Zhou6,7 & J. Ma7,9,10

Magnetization plateaus in quantum magnets—where bosonic quasiparticles crystallize into

emergent spin superlattices—are spectacular yet simple examples of collective quantum

phenomena escaping classical description. While magnetization plateaus have been observed

in a number of spin-1/2 antiferromagnets, the description of their magnetic excitations

remains an open theoretical and experimental challenge. Here, we investigate the dynamical

properties of the triangular-lattice spin-1/2 antiferromagnet Ba3CoSb2O9 in its one-third

magnetization plateau phase using a combination of nonlinear spin-wave theory and neutron

scattering measurements. The agreement between our theoretical treatment and the

experimental data demonstrates that magnons behave semiclassically in the plateau in spite

of the purely quantum origin of the underlying magnetic structure. This allows for a quan-

titative determination of Ba3CoSb2O9 exchange parameters. We discuss the implication of

our results to the deviations from semiclassical behavior observed in zero-field spin dynamics

of the same material and conclude they must have an intrinsic origin.
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Quantum fluctuations favor collinear spin order in fru-
strated magnets1–3, which can be qualitatively different
from the classical limit (S→∞)4. In particular, quantum

effects can produce magnetization plateaus5–10, where the mag-
netization is pinned at a fraction of its saturation value. Magne-
tization plateaus can be interpreted as crystalline states of bosonic
particles, and are naturally stabilized by easy-axis exchange ani-
sotropy, which acts as strong off-site repulsion11–14. However, the
situation is less evident and more intriguing for isotropic Hei-
senberg magnets, which typically have no plateaus in the classical
limit. In a seminal work, Chubukov and Golosov predicted the
1/3 magnetization plateau in the quantum triangular lattice
Heisenberg antiferromagnet (TLHAFM), corresponding to an
up–up–down (UUD) state5. Their predictions were confirmed
by numerical studies6,15–21 and extended to plateaus in other
models6. Experimentally, the 1/3 plateau has been observed in
the spin-1/2 isosceles triangular lattice material Cs2CuBr422–26, as
well as in the equilateral triangular lattice materials RbFe(MoO4)2
(S= 5/2)27–29 and Ba3CoSb2O9 (effective S= 1/2)30–39.

Notwithstanding the progress in the search of quantum pla-
teaus, much less is known about their excitation spectra. Given
that they are stabilized by quantum fluctuations, it is natural to
ask if these fluctuations strongly affect the excitation spectrum.
The qualitative difference between the plateau and the classical
orderings may appear to invalidate spin-wave theory. For
instance, the UUD state in the equilateral TLHAFM is not a
classical ground state unless the magnetic field H is fine-tuned40.
Consequently, a naive spin wave treatment is doomed to
instability. On the other hand, spin wave theory builds on the
assumption of an ordered moment |〈Sr〉| close to the full
moment. Given that a sizable reduction of |〈Sr〉| is unlikely within
the plateau because of the gapped nature of the spectrum, a spin
wave description could be adequate. Although this may seem in
conflict with the order-by-disorder mechanism1–3 stabilizing the
plateau40–42, this phenomenon is produced by the zero-point
energy correction Ezp ¼ ð1=2ÞPq ωq þ OðS0Þ (ωq is the spin
wave dispersion), which does not necessarily produce a large
moment size reduction.

Here, one of our goals is to resolve this seemingly contradictory
situation. Recently, Alicea et al. developed a method to fix the
unphysical spin-wave instability40. This proposal awaits experi-
mental verification because the excitation spectrum has not
been measured over the entire Brillouin zone for any fluctuation-
induced plateau. We demonstrate that the modified nonlinear
spin wave (NLSW) approach indeed reproduces the
magnetic excitation spectrum of Ba3CoSb2O9 within the 1/3
plateau30–39. The excellent agreement between theory and
experiment demonstrates the semiclassical nature of magnons
within the 1/3 plateau phase, despite the quantum fluctuation-
induced nature of the ground state ordering. The resulting model

parameters confirm that the anomalous zero-field dynamics
reported in two independent experiments37,39 must be intrinsic
and non-classical.

Results
Overview. In this article, we present a comprehensive study of
magnon excitations in the 1/3 magnetization plateau phase of a
quasi-two-dimensional (quasi-2D) TLHAFM with easy-plane
exchange anisotropy. Our study combines NLSW theory with
in-field inelastic neutron scattering (INS) measurements of
Ba3CoSb2O9. The Hamiltonian is

H¼ J
P
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where 〈rr′〉 runs over in-plane nearest-neighbor (NN) sites of the
stacked triangular lattice and c

2 corresponds to the interlayer
spacing (Fig. 1a). J (Jc) is the antiferromagnetic intralayer
(interlayer) NN exchange and 0 ≤ Δ < 1. The magnetic field is
in the in-plane (x) direction (we use a spin-space coordinate
frame where x and y are in the ab plane and z is parallel to c).
hred= g⊥μBH is the reduced field and g⊥ is the in-plane g-tensor
component.

This model describes Ba3CoSb2O9 (Fig. 1b), which comprises
triangular layers of effective spin 1/2 moments arising from
the J ¼ 1=2 Kramers doublet of Co2+ in a perfect octahedral
ligand field. Excited multiplets are separated by a gap of
200–300 K due to spin–orbit coupling, which is much larger
than the Néel temperature TN= 3.8 K. Below T= TN,
the material develops conventional 120° ordering with wavevector
Q= (1/3, 1/3, 1)30. Experiments confirmed a 1/3 magnetization
plateau for Hjjab (Fig. 1c)31,33,35,36,38, which is robust down
to the lowest temperatures. We compute the dynamical spin
structure factor using NLSW theory in the 1/3 plateau phase.
We also provide neutron diffraction evidence of the UUD state
within the 1/3 plateau of Ba3CoSb2O9, along with maps of the
excitation spectrum obtained from INS.

Quantum-mechanical stabilization of the plateau in quasi-2D
TLHAFMs. While experimental observations show that
deviations from the ideal 2D TLHAFM are small in Ba3Co
Sb2O9

33,37,39, a simple variational analysis shows that any Jc > 0 is
enough to destabilize the UUD state classically. Thus, a naive spin
wave treatment leads to instability for Jc > 0. However, the gapped
nature of the spectrum5 implies that this phase must have a finite
range of stability in quasi-2D materials. This situation must
be quite generic among fluctuation-induced plateaus, as they
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Fig. 1 Stacked triangular lattice and the UUD state. a Spin structure in the quasi-2D lattice. b Crystal structure of Ba3CoSb2O9. c Magnetization curve for
Hjjab at T= 0.6 K highlighting the 1/3 plateau (the finite slope is due to Van Vleck paramagnetism33)
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normally require special conditions to be a classical ground
state9,10,43.

To put this into a proper semiclassical framework, we apply
Alicea et al.'s trick originally applied to a distorted triangular
lattice40. Basically, we make a detour in the parameter space with
the additional 1/S-axis quantifying the quantum effect (Fig. 2).
Namely, instead of expanding the Hamiltonian around S→∞
for the actual model parameters, we start from the special point,
Jc= 0, hred= 3JS, and a given value of 0 ≤ Δ ≤ 1, where the UUD
state is included in the classical ground state manifold. Assuming
the spin structure in Fig. 1a, we define

Sxr ¼ ~Szr ; S
y
r ¼ ~Syr ; S

z
r ¼ �~Sxr ; ð2Þ

for r ∈ Ae, Be, Ao, and Co and

Sxr ¼ �~Szr ; Syr ¼ ~Syr ; S
z
r ¼ ~Sxr ; ð3Þ

for r∈ Ce, Bo. Introducing the Holstein–Primakoff bosons, a yð Þ
μ;r ,

with 1 ≤ μ ≤ 6 being the sublattice index for Ae, Be, Ce, Ao, Bo, and
Co in this order, we have

~Szr ¼ S� ayμ;raμ;r;

~Sþr ¼ ~Sxr þ i~Syr �
ffiffiffiffiffi
2S

p
1� ayμ;raμ;r

4S
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and ~S�r ¼ ~Sþr
� �y

for r∈ μ, truncating higher order terms
irrelevant for the quartic interaction. We evaluate magnon self-
energies arising from decoupling of the quartic term.

As shown in Fig. 2b, the linear spin wave (LSW) spectrum for
Jc= 0 and hred= 3JS features two q-linear gapless branches at
q= 0, both of which are gapped out by the magnon–magnon
interaction (Fig. 2c). Small deviations from Jc= 0 and hred= 3JS
do not affect the local stability of the UUD state because the gap
must close continuously. Thus, we can investigate the excitation
spectrum of quasi-2D systems for fields near hred= 3JS.
Figure 2d, e show the spectra for hred shifted by ±10% from
hred= 3JS, where we still keep Jc= 0. For hred < 3JS, a band-
touching and subsequent hybridization appear between the

middle and the top bands around q= (1/6,1/6) (Fig. 2d). For
hred > 3JS, a level-crossing between the middle and bottom bands
appears at around q= 0 (Fig. 2e). A small Jc > 0 splits the three
branches into six (Fig. 2f, g). Figure 3a, b show the reduction of
the sublattice ordered moments for S= 1/2, Jc= 0, 0.09J, and

selected values of Δ. We find δ Sxμ

D E			 			=S≲30% throughout the

local stability range of the plateau. Thus, our semiclassical
approach is fully justified within the plateau phase. Figure 3c, d
show the field dependence of the staggered magnetization,

MUUD ¼ 1
6

SxAe

D E
þ SxBe

D E
� SxCe

D E
þ SxAo

D E
� SxBo

D E
þ SxCo

D E� �
;

ð5Þ

which is almost field-independent; a slightly enhanced field-
independence appears for small Δ. Similarly, while the magne-
tization is not conserved for Δ ≠ 1, it is nearly pinned at 1/3 for
the most part of the plateau (Fig. 3e, f).

UUD state in Ba3CoSb2O9. Next we show experimental evidence
for the UUD state in Ba3CoSb2O9 by neutron diffraction mea-
surements within the plateau phase for field applied along the
[1,–1,0] direction. We used the same single crystals reported
previously32,37, grown by the traveling-solvent floating-zone
technique and characterized by neutron diffraction, magnetic
susceptibility, and heat capacity measurements. The space
group is P63/mmc, with the lattice constants a= b= 5.8562 Å and
c= 14.4561 Å. The site-disorder between Co2+ and Sb5+ is
negligible with the standard deviation of 1%, as reported else-
where37. The magnetic and structural properties are consistent
with previous reports and confirm high quality of the
crystals30–39. These crystals were oriented in the (h, h, l) scat-
tering plane. The magnetic Bragg peaks at (1/3, 1/3, 0) and (1/3,
1/3, 1) were measured at T= 1.5 K (Fig. 4a, b). The large
intensity at both (1/3, 1/3, 0) and (1/3, 1/3, 1) confirms the UUD
state at μ0H ≥ 9.8 T32 (Fig. 4c). The estimated ordered moment is
1.65(3) μB at 10 T and 1.80(9) μB at 10.9 T. They correspond to 85
(2)% and 93(5)% of the full moment33, roughly coinciding with

0 1/3 2/3 1
q = (h, h )

0

0.5

1.0

1.5

2.0 b c

q = (h, h )
0 1/3 2/3 1

0

0.5

1.0

1.5

2.0

System of interest
(quasi-2D; quantum)

3D coupling
Jc

a

hred
Magnetic field

1. NLSW in 2D
(↑↑↓ is a CGS)

1/S
Quantum effect

hred = 3JSInstability

2. Turn on deviations

Naive classical
limit (S → ∞)

Quasi-2D classical system
(↑↑↓ is never a CGS)

0 1/3 2/3 1

q = (h, h )

d

0

0.5

1.0

1.5

2.0

� / J

q = (h, h )

e

� / J

0 1/3 2/3 1
0

0.5

1.0

1.5

2.0

 � / J

q = (h, h, 1)

0

0.5

1.0

1.5

2.0

0 1/3 2/3 1

f

0 1/3 2/3 1
0

0.5

1.0

1.5

2.0

� / J

� / J� / J

q = (h, h, 1)

g

NLSW (quasi-2D): hred = 3.3JSNLSW (quasi-2D): hred = 2.7JSNLSW (2D): hred = 2.7JS NLSW (2D): hred = 3.3JS

NLSW (2D): hred = 3JSLSW (2D): hred = 3JS
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the predicted range (Fig. 3d). This diffraction pattern can
be contrasted with that of the 120° state, characterized by a
combination of the large intensity at (1/3, 1/3, 1) and lack
of one at (1/3, 1/3, 0). Our diffraction result is fully consistent
with previous nuclear magnetic resonance (NMR)35 and
magnetization measurements31,33.

Excitation spectrum. We now turn to the dynamical properties
in the UUD phase. Figure 5a–c show the INS intensity I(q, ω)≡
ki/kf (d2σ/dΩdEf) along high-symmetry directions. The applied
magnetic field μ0H= 10.5 T is relatively close to the transition
field μ0Hc1= 9.8 T32 bordering on the low-field coplanar ordered
phase35, while the temperature T= 0.5 K is low enough compared
to TN ≈ 5 K36 for the UUD phase at this magnetic field. The in-
plane dispersion shown in Fig. 5a comprises a seemingly gapless
branch at q= (1/3, 1/3, −1) (Fig. 5c), and two gapped modes
centered around 1.6 and 2.7 meV. Due to the interlayer coupling,
each mode corresponds to two non-degenerate branches. As their
splitting is below the instrumental resolution, we simply refer
to them as ω1, ω2 and ω3, unless otherwise mentioned (Fig. 5).
The dispersions along the c-direction are nearly flat, as shown in
Fig. 5b, c for q= (1/2, 1/2, l) and q= (1/3, 1/3, l), respectively,
reflecting the quasi-2D lattice33,37. Among the spin wave modes
along q= (1/2, 1/2, l) and q= (1/3, 1/3, l) in Fig. 5b, c, ω1 for
q= (1/2, 1/2, l) displays a relatively sharp spectral line.

As discussed below, most of the broadening stems from the
different intensities of the split modes due to finite Jc.

Comparing the experiment against the NLSW calculation, we
find that the features of the in-plane spectrum in Fig. 5a are
roughly captured by the theoretical calculation near the low-
field onset of the plateau in Fig. 2f (hred= 2.7JS ≈ 1.03hred,c1).
This observation is in accord with the fact that the applied field
(μ0H= 10.5 T) is close to μ0Hc1= 9.8 T32. To refine the
quantitative comparison, we calculate the scattering intensity
Itot q;ωð Þ � γr0=2ð Þ2 F qð Þj j2Pα 1� q̂αq̂αð Þg2αSαα q;ωð Þ where
F(q) denotes the magnetic form factor of Co2+ corrected with
the orbital contribution, (γr0/2)2 is a constant, q̂α ¼ qα= qj j are the
diagonal components of the dynamical structure factor evaluated
at 10.5 T; off-diagonal components are zero due to symmetry.
Defining the UUD order as shown in Fig. 1a, transverse spin
fluctuations related to single-magnon excitations appear in Syy

and Szz , while longitudinal spin fluctuations corresponding to the
two-magnon continuum appear in the inelastic part of Sxx ,
denoted as Sjj. Accordingly, Itot(q, ω) can be separated into
transverse I⊥ and longitudinal Ijj contributions. To compare with
our experiments, the theoretical intensity is convoluted with
momentum binning effects (only for I⊥) and empirical instru-
mental energy resolution. Figure 5d–f show the calculated
I⊥(q, ω), along the same high-symmetry paths as the experi-
mental results in Fig. 5a–c, for J= 1.74 meV, Δ= 0.85, Jc/J= 0.09,
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and g⊥= 3.95. The agreement between theory and experiment
is excellent. When deriving these estimates, J is controlled by
the saturation field μ0Hsat= 32.8 T for Hjĵc33. To obtain the
best fit, we also analyzed the field dependence of ω1, ω2, and ω3

(Fig. 6).
Remarkably, the calculation in Fig. 5d–f reproduces the

dispersions almost quantitatively. It predicts a gapped ω1 mode,
although the gap is below experimental resolution. The smallness
of the gap is simply due to proximity to Hc1. For each ωi, the band
splitting due to Jc yields pairs of poles ω±

i dispersing with a phase
difference of π in the out-of-triangular-plane direction (Fig. 5e, f).
For each pair, however, one pole has a vanishing intensity for
q= (1/2, 1/2, l). Consequently, ω1 along this direction is free from
any extrinsic broadening caused by overlapping branches (Fig. 5e),
yielding a relatively sharp spectral line (Fig. 5h). The correspond-
ing bandwidth ≈ 0.2 meV (Fig. 5b) provides a correct estimate
for Jc. By contrast, for q= (1/3, 1/3, l), all six ω±

i branches have
non-zero intensity, which leads to broadened spectra and less
obvious dispersion along l (Fig. 5c, f).

The field-dependence of ω1–ω3 at q= (1/3, 1/3, 1) is extracted
from constant-q scans at T= 0.1 K for selected fields 10.5–13.5 T
within the plateau (Fig. 6a). By fitting the field-dependence of
the low-energy branches of ω1,2, which become gapless at a
plateau edge, we obtain the quoted model parameters. The
field dependence is reproduced fairly well (Fig. 6b, c), although
the calculation slightly underestimates ω3. We find ω1 and ω3 (ω2)
increase (decreases) almost linearly in H, while the ω1 and ω2

branches cross around 12.6 T. The softening of ω1 (ω2) at the
lower (higher) transition field induces the Y-like (V-like) state,
respectively20,35. The nonlinearity of the first excitation gap
near these transitions (visible only in the calculation) is due to
the anisotropy; there is no U(1) symmetry along the field
direction for Δ ≠ 1.

Discussion
Our work has mapped out the excitation spectrum in the
1/3 plateau—a manifestation of quantum order-by-disorder
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theory along the same momentum cuts as in (a)–(c) for J= 1.74meV, Δ= 0.85, Jc/J= 0.09, and g⊥= 3.95. The solid lines show the magnon poles. (g)
and (h) Energy dependence of the calculated scattering intensity, Itot(q, ω) (solid line), compared with the experiment for (g) q= (1/3, 1/3, −2) and
(h) q= (1/2, 1/2, −2) (error bars represent one standard deviation). The longitudinal contribution to the scattering intensity, Ijj q;ωð Þ, is plotted separately
as a shaded area. The energy of the outgoing neutrons is Ef= 5meV (3 meV) above (below) the dashed line in (a–c), (g), and (h)
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effect—in Ba3CoSb2O9. Despite the quantum-mechanical origin
of the ground state ordering, we have unambiguously demon-
strated the semiclassical nature of magnons in this phase. In
fact, the calculated reduction of the sublattice magnetization,
δSμ= S− |〈Sr〉| with r∈ μ, is relatively small (Fig. 3b):
δSAe

¼ δSAo
¼ 0:083, δSBe

¼ δSCo
¼ 0:073, and δSCe

¼ δSBo
¼

0:14 at 10.5 T for the quoted model parameters. This is consistent
with the very weak intensity of the two-magnon continuum
(Fig. 5g, h). This semiclassical behavior is protected by the
excitation gap induced by anharmonicity of the spin waves
(magnon–magnon interaction). We note that a perfect collinear
magnetic order does not break any continuous symmetry even
for Δ= 1, i.e., there is no gapless Nambu–Goldstone mode.
The collinearity also means that three-magnon processes are not
allowed44. The gap is robust against perturbations, such as ani-
sotropies, lattice deformations40, or biquadratic couplings for S >
1/2 (a ferroquadrupolar coupling can stabilize the plateau even
classically5). Thus, we expect the semiclassical nature of the
excitation spectrum to be common to other 2D and quasi-2D
realizations of fluctuation-induced plateaus, such as the 1/3
plateau in the spin-5/2 material RbFe(MoO4)229. Meanwhile, it
will be interesting to examine the validity of the semiclassical
approach in quasi-1D TLHAFMs, such as Cs2CuBr423, where
quantum fluctuations are expected to be stronger.

Finally, we discuss the implications of our results for the zero-
field dynamical properties of the same material, where recent
experiments revealed unexpected phenomena, such as broadening
of the magnon peaks indescribable by conventional spin-wave

theory, large intensity of the high-energy continuum37, and
the extension thereof to anomalously high frequencies37,39. Spe-
cifically, it was reported that magnon spectral-line broadened
throughout the entire Brillouin zone, significantly beyond
instrumental resolution, and a high frequency (≳ 2 meV) exci-
tation continuum with an almost comparable spectral weight as
single-magnon modes37. All of these experimental observations
indicate strong quantum effects. Given that the spin Hamiltonian
has been reliably determined from our study of the plateau phase,
it is interesting to reexamine if a semiclassical treatment of this
Hamiltonian can account for the zero-field anomalies.

A semiclassical treatment can only explain the line broadening
in terms of magnon decay44–48. NLSW theory at H= 0 describes
the spin fluctuations around the 120° ordered state by incor-
porating single-to-two magnon decay at the leading order
O(S0). At this order, the two-magnon continuum is evaluated
by convoluting LSW frequencies. The self-energies include
Hartree–Fock decoupling terms, as well as the bubble Feynman
diagrams comprising a pair of cubic vertices Γ3 � O S1=2

� �
45–48,

with the latter computed with the off-shell treatment. The most
crucial one corresponds to the single-to-two magnon decay
(see the inset of Fig. 7a),

Σ q;ωð Þ ¼ 1
2N

X
k

Γ3 k; q� k; qð Þj j2
ω� ωH¼0

k � ωH¼0
q�k þ i0

; ð6Þ

where ωH¼0
k denotes the zero-field magnon dispersion. We show

the zero-field dynamical structure factor, Stot
H¼0 q;ωð Þ, at the

M point for representative parameters in Fig. 7a–d. The
NLSW result for the ideal TLHAFM (Jc= 0 and Δ= 1) exhibits
sizable broadening and a strong two-magnon continuum45–48

(see also Fig. 7e). However, a slight deviation from Δ= 1 renders
the decay process ineffective because the kinematic condition,
ωH¼0
q ¼ ωH¼0

k þ ωH¼0
q�k , can no longer be fulfilled in 2D for any

decay vertex over the entire Brillouin zone if Δ≲0:9245. This
situation can be inferred from the result for Jc= 0 and Δ= 0.85,
where the two-magnon continuum is pushed to higher fre-
quencies, detached from the single-magnon peaks. In fact, the
sharp magnon lines are free from broadening. The suppression of
decay results from gapping out one of the two Nambu–Goldstone
modes upon lowering the Hamiltonian symmetry from SU(2) to
U(1), which greatly reduces the phase space for magnon decay.
The interlayer coupling renders the single-magnon peaks even
sharper and the continuum even weaker (Fig. 7c, d).

To determine whether the anomalous zero-field spin dynamics
can be explained by a conventional 1/S expansion, it is crucial
to estimate Δ very accurately. Previous experiments reported
Δ= 0.95 (low-field electron spin resonance experiments
compared with LSW theory33) and Δ= 0.89 (zero-field INS
experiments compared with NLSW theory37). However, the
NLSW calculation reported a large renormalization of the
magnon bandwidth (≈ 40% reduction relative to the LSW
theory)37, suggesting that the previous estimates of Δ may be
inaccurate. Particularly, given that Δ is extracted by fitting
the induced gap / ffiffiffiffiffiffiffiffiffiffiffiffi

1� Δ
p

, the LSW approximation under-
estimates 1− Δ (deviation from the isotropic exchange) because
it overestimates the proportionality constant37.
Figure 7d, f show Stot

H¼0 q;ωð Þ for Jc/J= 0.09 and Δ= 0.85. We
find that Stot

H¼0 q;ωð Þ remains essentially semiclassical, with sharp
magnon lines and a weak continuum, which deviates significantly
from the recent results of INS experiments37,39. We thus conclude
that the Hamiltonian that reproduces the plateau dynamics fails
to do so at H= 0 within the spin wave theory, even after taking
magnon–magnon interactions into account at the 1/S level. We
also mention that the breakdown of the kinematic condition for
single-to-two magnon decay also implies the breakdown of the
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condition for magnon decay into an arbitrary number of mag-
nons44. Thus, the semiclassical picture of weakly interacting
magnons is likely inadequate to simultaneously explain the low-
energy dispersions and the intrinsic incoherent features (such as
the high-intensity continuum and the line-broadening) observed
in Ba3CoSb2O9 at H= 0.

One may wonder if extrinsic effects can explain these experi-
mental observations. It is possible for exchange disorder to
produce continuous excitations as in the effective spin-1/2 tri-
angular antiferromagnet YbMgGaO4

49. However, our single
crystals are the same high-quality samples reported pre-
viously32,37, essentially free from Co2+–Sb5+ site-disorder.
Indeed, our crystals show only one sharp peak at 3.6 K in the
zero-field specific heat32 in contrast to the previous reports of
multiple peaks31, which may indicate multi-domain structure.
Another possible extrinsic effect is the magnon–phonon coupling,
that has been invoked to explain the measured spectrum of the
spin-3/2 TLHAFM CuCrO2

50. However, if that effect were pre-
sent at zero field, it should also be present in the UUD state. The
fact that Eq. (1) reproduces the measured excitation spectrum of
the UUD state suggests that the magnon–phonon coupling is
negligibly small (a similar line of reasoning can also be applied
to the effect of disorder). Indeed, we have also measured the
phonon spectrum of Ba3CoSb2O9 in zero field by INS and
found no strong signal of magnon–phonon coupling. Our results
then suggest that the dynamics of the spin-1/2 TLHAFM is
dominated by intrinsic quantum mechanical effects that escape
a semiclassical spin-wave description. This situation is analogous
to the (π, 0) wave-vector anomaly observed in various spin-1/2
square-lattice Heisenberg antiferromagnets51–55, but now
extending to the entire Brillouin zone in the triangular lattice.
Given recent theoretical success on the square-lattice56, our

results motivate new non-perturbative studies of the spin-1/2
TLHAFM.

Methods
Neutron scattering measurements. The neutron diffraction data under magnetic
fields applied in the [1,–1,0] direction were obtained by using CG-4C cold triple-
axis spectrometer with the neutron energy fixed at 5.0 meV at High Flux Isotope
Reactor (HFIR), Oak Ridge National Laboratory (ORNL). The nuclear structure of
the crystal was determined at the HB-3A four-circle neutron diffractometer at
HFIR, ORNL and then was used to fit the nuclear reflections measured at the CG-
4C to confirm that the data reduction is valid. Only the scale factor was refined for
fitting the nuclear reflections collected at CG-4C and was also used to scale the
moment size for the magnetic structure refinement. 14 magnetic Bragg peaks
collected at CG-4C at 10 T were used for the magnetic structure refinement. The
UUD spin configuration with the spins along the field direction was found to best
fit the data. The nuclear and magnetic structure refinements were carried out using
FullProf Suite57.

Our inelastic neutron scattering experiments were carried out with the multi
axis crystal spectrometer (MACS)58 at NIST Center for Neutron Research (NCNR),
NIST, and the cold neutron triple-axis spectrometer (V2-FLEXX)59 at Helmholtz-
Zentrum Berlin (HZB). The final energies were fixed at 3 and 5 meV on the MACS
and 3.0 meV on V2-FLEXX.

Constraint on J due to the saturation field. An exact expression for the
saturation field for Hjĵc, Hsat, can be obtained from the level crossing condition
between the fully polarized state and the ground state in the single-spin–flip sector.
From the corresponding expression, we obtain:

J ¼ gjjμBHsatS
�1

3þ 6Δþ 2 1þ Δð Þ Jc=Jð Þ ; ð7Þ

where gjj ¼ 3:87 and μ0Hsat= 32.8 T33.

Variational analysis on classical instability of the 1/3 plateau in quasi-2D
TLHAFMs. We show that the UUD state is not the classical ground state in the
presence of the antiferromagnetic interlayer exchange Jc > 0. To verify that the
classical ground space for Jc= 0 acquires accidental degeneracy in the in-plane
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Fig. 7 Calculated dynamical spin structure factor of the in-plane 120° state at H= 0. The calculations are made using NLSW theory for spin 1/2. a–d The
results of the frequency dependence at q= (1/2, 1/2, 1) (M point) for (a) Jc= 0 and Δ= 1 (the ideal TLHAFM), (b) Jc= 0 and Δ= 0.85, (c) Jc= 0.09J and
Δ= 1, and (d) Jc= 0.09J and Δ= 0.85. The results are convoluted with the energy resolution 0.015J. The total spin structure factor Stot

H¼0 q;ωð Þ (solid line)
is divided into different components; Szz

H¼0 q;ωð Þ and Sxx
H¼0;T q;ωð Þ þ Syy

H¼0;T q;ωð Þ are single-magnon contributions (“T” denotes the transverse part), while
the longitudinal (L) part Sxx

H¼0;L q;ωð Þ þ Syy
H¼0;L q;ωð Þ corresponds to the two-magnon continuum; single magnon peaks (two-magnon continua) are

indicated by arrows (curly brackets), whereas the dashed square brackets indicate anti-bonding single-magnon contributions, which are expected to be
broadened by higher-order effect in 1/S48. The inset shows the lowest-order, O(S0), magnon self-energy incorporating the decay process of a single
magnon into two magnons. e and f Intensity plots of Stot

H¼0 q;ωð Þ along the high-symmetry direction in the Brillouin zone for (e) Jc= 0 and Δ= 1 and (f) Jc
= 0.09J and Δ= 0.85. J= 1.74 meV is assumed
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magnetic field, we rewrite Eq. (1) as

H¼ J
2

P
Δ

SΔ;A þ SΔ;B þ SΔ;C � hred
3J x̂

� �2
� 1� Δð ÞJ P

rr′h i
SzrS

z
r′ þ Jc

P
r

SxrS
x
rþĉ

2
þ SyrS

y
rþĉ

2
þ ΔSzrS

z
rþĉ

2

� �
þ const:;

ð8Þ

where the summation of
P

Δ is taken over the corner-sharing triangles in each
layer, with r= (Δ, μ) (μ=A, B, C) denoting the sublattice sites in each triangle.
This simply provides an alternative view of each triangular lattice layer (Fig. 8a). x̂
is the unit vector in the x or field direction. The easy-plane anisotropy forces every
spin of the classical ground state to lie in the ab plane and the second term in Eq.
(8) has no contribution at this level. Hence, for Jc= 0, any three-sublattice spin
configuration satisfying Szr ¼ 0 and

SΔ;A þ SΔ;B þ SΔ;C ¼ hred
3J

x̂; 8Δ; ð9Þ

is a classical ground state, where we momentarily regard SΔ,μ as three-component
classical spins of length S. Since there are only two conditions corresponding to the
x and y components of Eq. (9), whereas three angular variables are needed to
specify the three-sublattice state in the ab plane, the classical ground state manifold
for Jc= 0 retains an accidental degeneracy, similar to the well-known case of the
Heisenberg model (Δ= 1)43. The UUD state is the classical ground state only for
hred= 3JS.

The classical instability of the UUD state for Jc > 0 can be demonstrated by a
variational analysis. The UUD state in the 3D lattice enforces frustration for one-
third of the antiferromagnetic interlayer bonds, inducing large variance of the
interlayer interaction. As shown in Fig. 1a, only two of the three spin pairs along
the c-axis per magnetic unit cell can be antiferromagnetically aligned, as favored by
Jc, while the last one has to be aligned ferromagnetically. To seek for a better
classical solution, we consider a deformation of the spin configuration
parameterized by 0 ≤ θ ≤ π at hred= 3JS, such that the spin structure becomes
noncollinear within the ab plane (Fig. 8b). Because the magnetization in each layer
is fixed at S/3 per spin, the sum of the energies associated with the intralayer
interaction and the Zeeman coupling is unchanged under this deformation. In the
meantime, the energy per magnetic unit cell of the interlayer coupling is varied as

EcðθÞ ¼ 2JcS
2 cos 2θ � 2cos θð Þ: ð10Þ

We find that Ec(θ) is minimized at θ= π/3 for Jc > 0, corresponding to a saddle
point. This is a rather good approximation of the actual classical ground state for
small Jc > 0, as can be demonstrated by direct minimization of the classical energy
obtained from Eq. (1). The crucial observation is that the classical ground state
differs from the θ= 0 UUD state.

NLSW calculation for the UUD state. We summarize the derivation of the spin
wave spectrum in the quasi-2D TLHAFM with easy-plane anisotropy [see Eq. (1)].
As discussed in the main text, we first work on the 2D limit Jc= 0 exactly at hred=
3JS, and a given value of 0 ≤ Δ ≤ 1, which are the conditions for the UUD state to be
the classical ground state. Defining the UUD state as shown in Fig. 1a, we introduce
the Holstein–Primakoff bosons, aðyÞμ;r as in Eqs (2)–(4). After performing a Fourier

transformation, aμ;k ¼ 1=Nmag

� �1=2P
r2 μ e

�ik�raμ;r , where Nmag=N/6 is the

number of magnetic unit cells (six spins for each) and N is the total number of
spins, we obtain the quadratic Hamiltonian as the sum of even layers (sublattices
Ae–Ce) and odd layers (sublattices Ao–Co) contributions:

H0
LSW ¼ H0

LSW;even þH0
LSW;odd; ð11Þ

where the constant term has been dropped. Here,

H0
LSW;even ¼ S

2

X
k2RBZ

ayk
� �T

a�kð ÞT
� � H0

11;k H0
12;k

H0
21;k H0

22;k

 !
ak
ay�k

 !
; ð12Þ

with H0
11;k ¼ H0

22;k , H
0
12;k ¼ H0

21;k , where the summation over k is taken in the
reduced Brillouin zone (RBZ) corresponding to the magnetic unit cell of the UUD
state. From now on, we will denote this summation as

P
k . We have introduced

vector notation for the operators

ak ¼
aAe ;k

aBe ;k

aCe ;k

0
B@

1
CA �

a1;k
a2;k
a3;k

0
B@

1
CA; ay�k ¼

ayAe ;�k

ayBe ;�k

ayCe ;�k

0
BBB@

1
CCCA �

ay1;�k

ay2;�k

ay3;�k

0
BB@

1
CCA; ð13Þ

and matrix notation for the quadratic coefficients

H0
11;k ¼

S�1hred
3
2 J 1þ Δð Þγk 3

2 J 1� Δð Þγ�k
3
2 J 1þ Δð Þγ�k S�1hred

3
2 J 1� Δð Þγk

3
2 J 1� Δð Þγk 3

2 J 1� Δð Þγ�k 6J � S�1hred

0
B@

1
CA;

H0
12;k ¼

0 � 3
2 J 1� Δð Þγk � 3

2 J 1þ Δð Þγ�k

� 3
2 J 1� Δð Þγ�k 0 � 3

2 J 1þ Δð Þγk
� 3

2 J 1þ Δð Þγk � 3
2 J 1þ Δð Þγ�k 0

0
B@

1
CA;

ð14Þ

with γk ¼ 1
3 eik�a þ eik�b þ e�ik� aþbð Þ� �

. Similarly, we have

H0
LSW;odd ¼

S
2

X
k

�ayk
� �T

�a�kð ÞT
� � �H0

11;k
�H0
12;k

�H0
21;k

�H0
22;k

 !
�ak
�ay�k

 !
; ð15Þ

with

�ak ¼
aAo ;k

aBo ;k

aCo ;k

0
B@

1
CA �

a4;k
a5;k
a6;k

0
B@

1
CA;�ay�k ¼

ayAo ;�k

ayBo ;�k

ayCo ;�k

0
BBB@

1
CCCA �

ay4;�k

ay5;�k

ay6;�k

0
BB@

1
CCA; ð16Þ

and

�H0
11;k ¼ �H0

22;k ¼
0 1 0

0 0 1

1 0 0

0
B@

1
CAH0

11;k

0 0 1

1 0 0

0 1 0

0
B@

1
CA;

�H0
12;k ¼ �H0

21;k ¼
0 1 0

0 0 1

1 0 0

0
B@

1
CAH0

12;k

0 0 1

1 0 0

0 1 0

0
B@

1
CA:

ð17Þ

The excitation spectrum of H0
LSW retains two k-linear modes at k= 0 (Fig. 2b).

Below, we include nonlinear terms to gap out these excitations. At this stage, the
nonlinear terms correspond to the mean-field (MF) decoupling of the intra-layer
quartic terms. Once we obtain such a MF Hamiltonian with the gapped spectrum,
the deviation from the fine-tuned magnetic field hred= 3JS and interlayer coupling
(as well as some other perturbation, if any) can be included. Here, the additional
term contains both LSW and NLSW terms. To proceed, we first define the
following mean-fields (MFs) symmetrized by using translational and rotational
invariance:

ρμ ¼ 1
Nmag

P
r2 μ

ayμ;raμ;r
D E

0
;

δμ ¼ 1
Nmag

P
r2 μ

aμ;r
� �2
 �

0

;

ξμν ¼ 1
3Nmag

P
r2 μ

P
η̂μν

ayμ;raν;rþη̂μν

D E
0
;

ζμν ¼ 1
3Nmag

P
r2 μ

P
η̂μν

aμ;raν;rþη̂μν

D E
0
;

ð18Þ

where η̂μν represents the in-plane displacement vector connecting sites r ∈ μ to a
nearest-neighbor site in sublattice ν. The mean values 〈...〉0 are evaluated with the
ground state of H0

LSW. The MFs for odd (even) layers are obtained from those for
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Fig. 8 Classical instability of the UUD state in the quasi-2D lattice. a Three-
sublattice structure for a single layer and a decomposition of the intralayer
bonds into corner-sharing triangles. b Deformation of the UUD state (see
Fig. 1a) parameterized by θ shown in the projection in the ab (or xy) plane;
the spins in sublattices Be and Co are unchanged
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even (odd) layers as

ρAo
¼ ρBe

; ρBo
¼ ρCe

; ρCo
¼ ρAe

;

δAo
¼ δBe

; δBo
¼ δCe

; δCo
¼ δAe

;

ξAoBo
¼ ξBeCe

; ξBoCo
¼ ξCeAe

; ξCoAo
¼ ξAeBe

;

ζAoBo
¼ ζBeCe

; ζBoCo
¼ ζCeAe

; ζCoAo
¼ ζAeBe

:

ð19Þ

By collecting all the contributions mentioned above, we obtain the NLSW
Hamiltonian

HNLSW ¼ S
2

X
k

ayk
� �T

�ayk
� �T

a�kð ÞT �a�kð ÞT
� �

´

Hee;k Heo;k H 0
ee;k H0

eo;k

Heo;k

� �y
Hoo;k H0

eo;�k

� �T
H 0

oo;k

H0
ee;�k

� ��
H0

eo;�k

� ��
Hee;�k

� ��
Heo;�k

� ��
H0

eo;k

� �y
H0

oo;�k

� ��
Heo;�k

� �T
Hoo;�k

� ��

0
BBBBBBBB@

1
CCCCCCCCA

ak
�ak
ay�k

�ay�k

0
BBBB@

1
CCCCA;

ð20Þ

where

Hee;k ¼ H0
11;k þ

�2Jc 0 0

0 2Jc 0

0 0 2Jc

0
BB@

1
CCAþ S�1

μAe
MF þ 2JcρAo

tAeBe
MF

� ��
γk tCeAe

MF γ�k

tAeBe
MF γ�k μBeMF � 2JcρBo

tBeCe
MF

� ��
γk

tCeAe
MF

� ��
γk tBeCe

MF γ�k μCe
MF � 2JcρCo

0
BBBBBB@

1
CCCCCCA
;

Hoo;k ¼ �H0
11;k þ

�2Jc 0 0

0 2Jc 0

0 0 2Jc

0
BB@

1
CCAþ S�1

μAo
MF þ 2JcρAe

tAoBo
MF

� ��
γk tCoAo

MF γ�k

tAoBo
MF γ�k μBo

MF � 2JcρBe
tBoCo
MF

� ��
γk

tCoAo
MF

� ��
γk tBoCo

MF γ�k μCo
MF � 2JcρCe

0
BBBBBB@

1
CCCCCCA
;

Hee; k
0 ¼ H0

12;k þ S�1

ΓAe
MF gAeBe

MF γk gCeAe
MF γ�k

gAeBe
MF γ�k ΓBe

MF gBeCe
MF γk

gCeAe
MF γk gBeCe

MF γ�k ΓCMF

0
BBB@

1
CCCA;

H0
oo;k ¼ �H0

12;k þ S�1

ΓAo
MF gAoBo

MF γk gCoAo
MF γ�k

gAoBo
MF γ�k ΓBo

MF gBoCo
MF γk

gCoAo
MF γk gBoCo

MF γ�k ΓCo
MF

0
BBB@

1
CCCA;

Heo;k ¼ cosk3

Jc 1þ Δð Þ 0 0

0 Jc 1� Δð Þ 0

0 0 Jc 1� Δð Þ

0
BB@

1
CCAþ S�1cosk3

tAeAo
MF

� ��
0 0

0 tBeBo
MF

� ��
0

0 0 tCeCo
MF

� ��

0
BBBBBB@

1
CCCCCCA
;

H0
eo;k ¼ cosk3

�Jc 1� Δð Þ 0 0

0 �Jc 1þ Δð Þ 0

0 0 �Jc 1þ Δð Þ

0
BB@

1
CCAþ S�1cosk3

gAeAo
MF 0 0

0 gBeBo
MF 0

0 0 gCeCo
MF

0
BBB@

1
CCCA:

ð21Þ

Here the MF parameters are given as follows. First, those associated with the
intralayer coupling are

μAe
MF ¼ 3J ρBe

� ρCe
� 1þΔ

2 ReξAeBe
� ReζCeAe

� �
� 1�Δ

2 ReξCeAe
� ReζAeBe

� �h i
;

μBe
MF ¼ 3J ρAe

� ρCe
� 1þΔ

2 ReξAeBe
� ReζBeCe

� �
� 1�Δ

2 ReξBeCe
� ReζAeBe

� �h i
;

μCe
MF ¼ 3J �ρAe

� ρBe
þ 1þΔ

2 ReζBeCe
þ ReζCeAe

� �
� 1�Δ

2 ReξBeCe
þ ReξCeAe

� �h i
;

tAeBe
MF ¼ 3J ξAeBe

� 1þΔ
4 ρAe

þ ρBe

� �
þ 1�Δ

8 δ�Ae
þ δBe

� �h i
;

tBeCe
MF ¼ 3J �ξBeCe

þ 1þΔ
8 δ�Be

þ δCe

� �
� 1�Δ

4 ρBe
þ ρCe

� �h i
;

tCeAe
MF ¼ 3J �ξCeAe

þ 1þΔ
8 δ�Ce

þ δAe

� �
� 1�Δ

4 ρCe
þ ρAe

� �h i
;

ΓAe
MF ¼ 3J

2
1þΔ
2 ξCeAe

� ζAeBe

� �
þ 1�Δ

2 ξ�AeBe
� ζCeAe

� �h i
;

ΓBe
MF ¼ 3J

2
1þΔ
2 ξ�BeCe

� ζAeBe

� �
þ 1�Δ

2 ξAeBe
� ζBeCe

� �h i
ΓCe
MF ¼ 3J

2
1þΔ
2 ξ�BeCe

� ξCeAe

� �
þ 1�Δ

2 ζBeCe
� ζCeAe

� �h i
;

gAeBe
MF ¼ 3J ζAeBe

� 1þΔ
8 δAe

þ δBe

� �
þ 1�Δ

4 ρAe
þ ρBe

� �h i
;

gBeCe
MF ¼ 3J �ζBeCe

þ 1þΔ
4 ρB þ ρC
� �� 1�Δ

8 δB þ δCð Þ
h i

;

gCeAe
MF ¼ 3J �ζCeAe

þ 1þΔ
4 ρCe

þ ρAe

� �
� 1�Δ

8 δCe
þ δAe

� �h i
;

ð22Þ

for even layers and

μAo
MF ¼ μBe

MF; μ
Bo
MF ¼ μCe

MF; μ
Co
MF ¼ μAe

MF;

tAoBo
MF ¼ tBeCe

MF ; tBoCo
MF ¼ tCeAe

MF ; tCoAo
MF ¼ tAeBe

MF ;

ΓAo
MF ¼ ΓBe

MF; Γ
Bo
MF ¼ ΓCe

MF; Γ
Co
MF ¼ ΓAe

MF;

gAoBo
MF ¼ gBeCe

MF ; gBoCo
MF ¼ gCeAe

MF ; gCoAo
MF ¼ gAeBe

MF ;

ð23Þ

for odd layers. Similarly, the new MF parameters associated with the interlayer
coupling are

tAeAo
MF ¼ Jc � 1þΔ

2 ρAe
þ ρAo

� �
þ 1�Δ

4 δ�Ae
þ δAo

� �h i
;

tBeBo
MF ¼ Jc

1þΔ
4 δ�Be

þ δBo

� �
� 1�Δ

2 ρBe
þ ρBo

� �h i
;

tCeCo
MF ¼ Jc

1þΔ
4 δ�Ce

þ δCo

� �
� 1�Δ

2 ρCe
þ ρCo

� �h i
;

gAeAo
MF ¼ Jc � 1þΔ

4 δAe
þ δAo

� �
þ 1�Δ

2 ρAe
þ ρAo

� �h i
;

gBeBo
MF ¼ Jc

1þΔ
2 ρBe

þ ρBo

� �
� 1�Δ

4 δBe
þ δBo

� �h i
;

gCeCo
MF ¼ Jc

1þΔ
2 ρCe

þ ρCo

� �
� 1�Δ

4 δCe
þ δCo

� �h i
;

ð24Þ

Figure 9 shows the Δ-dependence of these MF parameters. Because these
MF parameters are real valued, the coefficient matrix in Eq. (20) has the form

HNLSW ¼ Pk Qk

Qk Pk

� �
; ð25Þ
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Fig. 9 Δ-dependence of the recombined MF parameters. MF parameters associated with (a) the intra-layer coupling and (b) the inter-layer coupling
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with

Pk ¼ Hee;k Heo;k

Heo;k Hoo;k

 !
;Qk ¼ H0

ee;k H0
eo;k

H0
eo;k H0

oo;k

 !
: ð26Þ

This form can be diagonalized by a Bogoliubov transformation,

ak
�ak
ay�k

�ay�k

0
BBBB@

1
CCCCA ¼ Uk Vk

Vk Uk

� �
αk

αy�k

 !
; ð27Þ

where αk αy�k

� �
is the six-component vector comprising the annihilation

(creation) operators of Bogoliubov bosons. The transformation matrices satisfy
Uμκ
k ¼ ðUμκ

�kÞ� and Vμκ
k ¼ ðVμκ

�kÞ� . The poles, ωκ,k, are the square-roots of the
eigenvalues of S2(Pk + Qk)(Pk−Qk).

When calculating the sublattice magnetization, the reduction of the ordered
moment relative to the classical value S corresponds to the local magnon density.
With the phase factors for each sublattice, cAe

¼ cBe
¼ �cCe

¼ cAo
¼ �cBo

¼
cCo

¼ 1 (see Fig. 1a), we have

hSxr i ¼ cμ S� hayμ;raμ;ri
� �

¼ cμ S� 1
Nmag

X
k

X
κ

Vμκ
k

		 		2 !
; ð28Þ

for site r in sublattice μ.
The dynamical spin structure factor is defined by

Sαα q;ωð Þ ¼ R1�1
dt
2π e

iωt 1
N

P
r;r′

e�iq� r�r′ð Þ Sαr tð ÞSαr′ 0ð Þ� 
¼ P

n
δ ω� ωnð Þ 0jSαqjn

D E			 			2: ð29Þ

where Sαq ¼ N�1=2
P

r S
α
r e

�iq�r and |n〉 and ωn denote the nth excited state and its
excitation energy, respectively. The longitudinal spin component is

Sxq ¼
ffiffiffiffi
N

p

3
S δq;0 þ δq;Q þ δq;�Q

� �
þ δSxq; ð30Þ

with Q= (1/3, 1/3,1) and

δSxq ¼ �
ffiffiffiffi
1
N

r X
μ;k

cμa
y
μ;k�qaμ;k ; ð31Þ

We truncate the expansions of the transverse spin components at the lowest
order:

Syq � �i
ffiffiffiffi
S
12

q P
μ

aμ;q � ayμ;�q

� �
;

Szq �
ffiffiffiffi
S
12

q P
μ

�cμ
� �

aμ;q þ ayμ;�q

� �
:

ð32Þ

The transverse components of the dynamical structure factor,
S? q;ωð Þ ¼ Syy q;ωð Þ þ Szz q;ωð Þ, reveal the magnon dispersion,

Syy q;ωð Þ ¼ P
n
δ ω� ωnð Þ 0jSyqjn

� 		 		2

� S
12

P
κ
δ ω� ωκ;q

� � P
μ

Uμκ
q � Vμκ

q
� �					

					
2

;

Szz q;ωð Þ ¼ P
n
δ ω� ωnð Þ h0jSzqjni

			 			2

� S
12

P
κ
δ ω� ωκ;q

� � P
μ
cμ Uμκ

q þ Vμκ
q

� �					
					
2

:

ð33Þ

Meanwhile, Sxx q;ωð Þ comprises the elastic contribution and the longitudinal
fluctuations,

Sjj q;ωð Þ ¼
X
n

δ ω� ωnð Þ 0jδSxqjn
D E			 			2; ð34Þ

which can be evaluated by using Wick’s theorem. The result at T= 0 is

Sjj q;ωð Þ ¼ Θ ωð ÞN�1
X
k

X
κ;λ;μ;ν

cμcνReAμν;κλ k; qð Þδ ω� ωκ;�kþq � ωλ;k

� �
; ð35Þ

where

Aμν;κλðk; qÞ ¼
1
2

Uμκ
k�q

� ��
Vμλ
k þ Vμκ

k�q

� ��
Uμλ
k

h i
Uνκ
k�q Vνλ

k

� ��þVνκ
k�q Uνλ

k

� ��h i
:

ð36Þ

Data availability. All relevant data are available from the corresponding authors
upon reasonable request.
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